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ABSTRACT
This report describes the development of a computer code to solve the two-dimensional
boundary layer equations in direct, inverse or mixed direct/inverse mode for airfoil flows.
The solution algorithm uses body conformal coordinates and a relaxation scheme with
flow-dependent operators. The code incorporates two methods to sweep the flow field.

Topics include a description of the code structure, its input requirements, boundary
condition and flow field initialization and various software tools required by the main
algorithm. Finally, verification results are presented.

This work, done in cooperation with the University of Toronto, seeks the development of
a boundary layer code compatible with the NASA Ames ARC2D Navier-Stokes code.
The two codes will be used in a study of the Fortified Navier-Stokes concept.

RESUME
Ce rapport decrit le developpement d'un logiciel pour rdsoudre les 6quations des couches
limites appliqudes A l'dcoulement autour d'un profil d'aile. Les dquations sont exprimdes
en coordonndes conformes au corps dtudid; une m6thode de relaxation avec des
op6rateurs s'ajustant i l'dcoulement local ainsi que des m6thodes de mode direct, inverse
et mixte direct/inverse sont employdes. Enfin, deux mthodes de balayage du champ
sont utilisdes.

Les sujets suivants sont abord6s: la structure du logiciel, les entrees ndcessaires a son
operation, les conditions limites et l'initiation des variables. De plus, diffdrents outils
numriques requis par le logiciel principal sont d6crits et des r sultats ddmontrant la
validit6 du lociciel sont pr~sent~s.

Ce travail, mend en collaboration avec l'Universit6 de Toronto, vise A dlaborer un
programme de couche limite compatible avec le programme Navier-Stokes ARC2D mis
au point par le centre de recherche Ames de la NASA. Les deux programmes serviront A
6tudier le concept fortifid de Navier-Stokes.
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INTRODUCTION

Background

In the mid 1980's, researchers at NASA Ames proposed the Fortified Navier-Stokes
(FNS) concept, a procedure by which approximate solutions, or any other known
information, is used to improve the accuracy and efficiency of a Navier-Stokes code.
Between 1985 and 1988, Steger and Van Dalsem [1 l 2 ] 31 explored the FNS concept by
combining a Navier-Stokes code with a boundary layer code. The boundary layer
equations are solved in a body conformal frame of reference while the Navie- Stokes
solver uses Cartesian velocity components with generalized curvilinear coordinates.
Since the two procedures use different grids and velocity components, going from one
solution to the other involves interpolation and rotation of the velocity data. Despite
these differences, Steger and van Dalsem still improved the convergence of their
Navier-Stokes code by an order of magnitude. Their work laid a solid foundation for
further investigations of the FNS concept.

The purpose of the current project is to investigate the range of validity of the FNS
approach as a function of factors like Mach number, Reynolds number, and angle of
attack. Three phases are planned:

i. the development of a boundary layer solver compatible with the NASA Ames code

ARC2D,

ii. integration of the boundary layer and Navier-Stokes codes, and

iii. parametric studies using the FNS code.

This report presents partial results for phase i) above. It describes the development of
GBL, a boundary layer research code to study the Steger and Van Dalsem algorithms.
GBL has the flexibility to support changes to the formulation of the equations, the
boundary conditions, or to thz various iterative schemes used to solve the equations.

At this point, it is useful to review the boundary layer work of Steger and Van Dalsem.

Previous Generalized Boundary Layer Work

Several boundary layer methods (e.g. Cebeci141) employ a coordinate transformation, or
"stretching" of the governing equations prior to formulation of the finite difference
equations. The purpose is to scale the growth of the viscous layer so that the new
equations, expressed in terms of similarit variables, may be solved on an approximately
rectangular grid. Van Dalsem and Steger took a different approach. They developed a
scheme to solve the two-dimensional, steady state boundary layer equations in body-
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conformal coordinates (s,n), which amounts to solving the equations in physical - instead
of similarity - variables. An adaptive grid must then be used to concentrate a sufficient
number of computational points within the boundary layer. Solution of the equations on
a grid with uneven spacing results in complicated finite difference equations, but this is
avoided by transforming the equations to a computational domain with uniform grid
spacing so that standard, unweighted differences can be used.

The scheme of Van Dalsem and Steger is noteworthy for two reasons. First, it assumes
the equations are only weakly coupled when the pressure is given. Each equation can
then be solved independently in a sequential scheme. They also chose their finite
difference operators to obtain bidiagonal or tridiagonal systems of equations which are
solved efficiently with the Thomas algorithm.

Second, their scheme avoids use of complex space marching procedures within separated
flow regions. Instead, the scheme marches in a single direction while flow-dependent
finite difference operators adapt locally to respect the parabolic nature of the boundary
layer equations.

The earlier work of Steger and Van DalsemI51 used a predictor-corrector finite difference
approximation to the two-dimensional, steady-state equations. A mix of upwind and
central operators is used to differentiate the convective terms within the momentum and
energy equations. The choice of which operator to use depends on the local value of
u lUe. This algorithm was later expanded1 61 to the three-dimensional unsteady form. The
formulation was also simplified to a single-step process and only the upwind operator,
dependent on the sign of the contravariant velocity U or W, was retained for the
convective terms. The reader should be aware that Steger and Van Dalsem do not use
the time variable in a true time fashion, since the method still assumes that the pressure
distribution is fixed and given. Instead, the "time-like" variable is used to relax the
equations.

The above review would not be complete without mention that, in 1988, Steger and Van
Dalsem 71 developed a very different approach to solving the boundary layer equations.
Having recognized the lack of a boundary layer procedure directly compatible with their
Navier-Stokes algorithm, they recast the boundary layer equations in a form using the
Cartesian velocity components instead of the usual body conformal components. The
new equations can be solved on a Cartesian grid, thus, increasing commonality with
Navier-Stokes codes.

GBL Program Structure

GBL uses the 1986 body conformal version of the Steger and Van Dalsem boundary
layer equations with time-like relaxation. It was selected over the 1988 version because
it is simpler to implement and provides a framework from which to study the behavior of

UNCLASSIFIED



UNCLASSIFIED
3

the algorithm. Scaling of the equations, however, was modified181 to increase their
compatibility with Pulliam's ARC2D 19' Navier-Stokes code. The latter will be used as
the Navier-Stokes components of the FNS code.

The infrastructure of GBL is designed in four general parts: input, initialization,
computations and output. In addition, specialized graphics tools were developed to
control program execution and to examine data during the development cycle. However,
these tools are machine specific and their description is outside the scope of this work.
For these reasons, the graphics tools are not described in this report.

Program inputs are described in the PROGRAM INPUTS section. They include
parameters specifying the freestream conditions as well as switches to control program
execution. In addition, the user may elect to run one of the built-in test cases to verify
the implementation of a new algorithm, or to run an airfoil flow field calculation. The
user may also direct GBL to generate its own grids for the test cases or select one of two
grid generation schemes for the airfoil case (an "adaptive" grid or a subset of the Navier-
Stokes grid). Various tools are required by the input, initialization and computation
routines as well as for output processing. These are described in the
COMPUTATIONAL TOOLS section.

Four initialization procedures may be used by GBL: two use ARC2D data to initialize the
flow about an airfoil while the others are test cases for flow over a flat plate. A
description of these procedures is provided in the INITIALIZATION OF VARIABLES
section. In the SOLUTION SCHEME section, the algorithm and overall program flow
along with the application of boundary conditions, sweeping schemes and determination
of the inverse mode region are described.

The CODE TESTING section present code validation results while conclusions are
presented in the last section.

UNCLASSIFIED



UNCLASSIFIED
4

[BLANK PAGE1

UNCLASSIFIED



UNCLASSIFIED
5

PROGRAM INPUTS

The user selects the run parameters for GBL by editing the control file inplrun.sw which
contains sufficient information for GBL to proceed automatically, whether it is a test case
or airfoil computations. The parameters are divided into two general categories: essential
parameters, which are always required by the program, and test parameters which are
used to verify new algorithms, as listed below.

Essential parameters:

[1] Freestream parameters, used to compute all freestream variables required to scale
the equations.

[2] Turbulence model switch and transition points for lower and upper surfaces of the
airfoil.

[3] Grid parameters which include a switch to chose between a flat plate grid
generated internally or an airfoil grid read from ARC2D. The flat plate grid
generator requires user supplied specifications while for airfoil cases, the
boundary layer grid is generated automatically from the Navier-Stokes grid. Grid
generation is discussed in further details later in this section.

[4] Time step to use for the time-like relaxation scheme and total number of cycles
for the run.

[5] Convergence criteria to use for computation of the residuals.

Test parameters:

[1] Mode (direct/inverse) to be tested.

[2] Direction for sweeps of the computational field during the solution process.

[3] Switches to control execution of individual equations during the solution process.

[4] Self-similarity parameter for test cases involving Falkner-Skan flow.

[5] Control over the range of the computation; particularly useful when
investigating behavior of the algorithm over a specified flow region, e.g. about the
airfoil nose or in its wake.

[6] Control over the extent of the region where the inverse formulation is used as
well as specification of parameters used to update the inverse forcing function (to
be explained later).

[71 Control over individual boundary conditions for the momentum and energy
equations.
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[8] Selection of an additional relaxation factor (extra to the time-like terms) which
may be applied to the solution of individual equations.

A sample control file is given in appendix A along with a brief description of each
parameter.

GBL supports flow field initialization for several test and airfoil cases. The test cases
involve Falkner-Skan or Klineberg flow. These flows are stricly laminar, however, the
Falkner-Skan case may also be used with turbulence to simulate turbulent flat plate flow.
For either case, GBL generates a flat plate boundary layer grid according to user
specifications. Airfoil cases require the user to provide a Nlavier-Stokes grid and the
corresponding state vector from ARC2D. GBL then geneiates a compatible boundary
layer grid and initializes flow field variables from the ARC2D data.

The remainder of this section provides details about computation of the freestream
parameters, generation of the flat plate and airfoil boundary layer grids and their
transformation to body conformal coordinates.

Freestream Parameters

The freestream parameters are used to scale flow field variables. The user provides four
parameters: (i) the Reynolds number (Re,.), (ii) the Mach number (M.*), (iii) the
freestream temperature (T.*) and (iv) a reference length (/). All other freestream
parameters are computed from these four values with the assumption that the fluid
behaves like a perfect gas and that the flow is isentropic. The computations proceed in
the following order.

The freestream speed of sound is calculated from the freestream temperature, the ratio of
specific heat at constant pressure to specific heat at constant volume, y (1.4 for air), and
the gas constant R (287.3 m 2/K -sec 2 for air).

a., = (,yRT.)'/ (2-1)

Having determined a,-, the freestream velocity u*. is obtained from the Mach number
definition

u = M ooa-. (2-2)

The freestream temperature is also used with Sutherland's approximation [1°0 (p. 312) and
reference values of the temperature and viscosity at sea level, as defined in the standard

UNCLASSIFIED



UNCLASSIFIED
7

atmosphere (TSL = 288.16K, PSL = 1.78935xl- 5 N-sec/m 2 ), to compute freestream
viscosity

1.458x 10- 6 T/ 2

g,, T-+S=T (2-3)

where S1 = 110.4 K. Freestream density is obtained from the definition of the freestream
Reynolds number and the reference length

Re**gt*P- = -- (2-4)
uj*

while the kinematic viscosity is simply the ratio of viscosity to density

V. 0 = - (2-5)
P,.

and freestream pressure is computed from the perfect gas relation

p00 = pRT0 . (2-6)

Finally, freestream total enthalpy is computed by substituting freestream values in its
definition

2

H* =cpT+ - (2-7)
2

Note that the normal velocity 'u- is omitted from the above definition of total enthalpy
because of the body conformal assumption used to derive the equations.

Flat Plate Grid Generation

GBL incorporates two sample cases to test the coding accuracy and/or the general
behavior of present and future algorithms. The first test case simulates self-similar
Falkner-Skan flow while the second case simulates a linearly decelerated flow with mild
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separation, initially computed by Klineberg and Steger. Both test cases, which are
explained in detail later in this report, require a flat plate grid generated internally by
GBL according to user specifications.

The run parameter file contains the following flat plate grid information: start coordinate
s, end coordinate s, the total number of streamwise stations NXS, and the number of
points normal to the streamwise direction at each station KBL. GBL assumes that the
stagnation point is located at the i = 0 position and that s, and Se are positive numbers.

At each station, the first point above the flat plate surface, h2, is located at n = 1, based
on the Prandlt logarithmic law of the wall, and multiplied by the user selected factor fl.
Freestream conditions and the theoretical Blasius wall shear stress distribution are used
in the computation. Different values are obtained for laminar and turbulent flow as
follows:

n2- (2-8a)Re*-(c.)"'

and the non dimensional wall shear stress iw takes different values for laminar and
turbulent flow. For laminar flow, it is defined as

i,, t = 0.332 u0  ]/ (2-8b)

while for turbulent flow, it is given by [ 1/4
0.0225 M J (2-8c)t=0025M 8 65" u**,

where * is the turbulent flat plate boundary layer displacement thickness (see reference
10, p.599)

6* = 0. 125 x .7DUi /](2-9)

For each station, the upper boundary in the n direction, nKBL, is located at the
corresponding Blasius displacement thickness multiplied by an amplification factor f, of
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the order of 1.5 to 5. For laminar flow, this yields

hKBL 5- V I / (2-l1Oa)
U 0

while for turbulent flow, we have

nKBL = ~ ~(2-10b)

The location of the KBL-3 points between h2 and hKBL is determined from the
exponential stretching function

hk = k-1 +, h 20l+ )(k -2) k =3,KBL -1 (2-11)

where e is computed using a Newton-Raphson method to yield hKBL when k =KBL.

Figure I shows a typical flat plate grid generated by GBL.

0.02 00

0.01 50

£0.0100

0

8O 0.0050

0.0000

0.0050 NOTE: X and Y coordinates not to scale

0.00 0.25 0.50 0.75 1.00
X coordinate

Figure 1. Flat plate grid generated by GBL
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Navier-Stokes and Boundary Layer Grids

When computing airfoil flow, GBL requires two files from the ARC2D Navier-Stokes
code: the grid file which contains the Cartesian coordinates (i,i) of the numerical grid,
and the state vector file which contains the density, i--momentum, y-momentum, and
energy information for each grid point.

Only grids of C-type topology, as shown in figure 2, are used in the present study. These
are generated with a hyperbolic grid generation program. Each Ti line starts from the
lower far-field wake, wraps around the airfoil, and ends at the upper far wake to form a
"C" shape. The lines, perpendicular to the rl lines, extend from the wake centerline, or
airfoil surface, to the far field outer boundary. The line defining the airfoil surface and
the wake centerline is the 71 = 1 line. The = I line is the lower far wake boundary. An
effort is made to keep the orthogonality of each (4,rj) line intersection. This is
particularly important near a solid boundary or at the wake centerline where we want to
solve the boundary layer equations. The reader should also notice that, for a Navier-
Stokes grid, the TI grid ines are concentrated where viscous effects dominate the flow,
i.e. near the airfoil surface and wake centerline.

20 -

10

0

U

-10

-20

-20 -10 0 10 20 30
X coordinate

Figure 2. Navier-Stokes grid in Cartesian coordinates

Compared to the chord length, the thickness of an airfoil boundary layer is thin, growing
from a fraction of a percent near the leading edge stagnation point, to some five or ten

UNCLASSIFIED



UNCLASS IFIED
11

percent at the trailing edge. It is then reasonable to assume that points near the airfoil
surface, for a given 4 station, are lined up on the normal to the surface at that same
station. A close examination of the Navier-Stokes grid shows this assumption to be valid
over most of the airfoil except for the trailing edge (see figure 3). At that point, three line
segments intersect: two from the airfoil lower and upper surfaces respectively, and one
from the wake centerline. This causes a significant slope discontinuity which makes it
impossible to define a normal to both the airfoil surface and the wake centerline; an
average normal is used instead. Hence, one must be careful in using trailing edge
Navier-Stokes coordinates for the boundary layer solution, since they are not truly
normal to the surface. Furthermore, the 4 lines are normally clustered at the trailing edge
to resolve local velocity gradients, thus several lines may not be normal to the surface in
that region.

0.00100 i

0.00050 ]

-0 00100 

-0.00050

X coordinate

Figure 3. Loss of orthogonality at the airfoil trailing edge

GBL uses the ARC2D Cartesian coordinates (i,j) to generate one of two possible
boundary layer grids. The first grid type consists of a subset from the Navier-Stokes grid
while the second grid type, discussed later in this section, is an "adaptive" grid.

Generating the boundary layer grid (see figure 4) from the Navier-Stokes grid presents
the advantage that the Navier-Stokes and boundary layer procedures share the same grid.
Interpolation of the variables is avoided and the overall computing expense of the FNS
procedure is reduced. However, to be useful as a boundary layer grid, a subset of the
Navier-Stokes grid grid must have a sufficient concentration of grid lines near the airfoil
surface to resolve the strong normal gradients characterizing the boundary layer region.
This is particularly important near the leading edge where the boundary layer is very
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thin. On the other hand, typical Navier-Stokes grids are generated such that the normal
distance between each 71 line and the airfoil surface is approximately constant. This
means only a small number of points span the boundary layer near the leading edge,
while more points than required span the boundary layer at the trailing edge. At least ten
points should span the boundary layer near the leading edge while no more than 35 to 45
points are required for the trailing edge. Fortunately, the rapid stretching of the normal
coordinates used to generate the Navier-Stokes grid respects the above conditions on the
number of points across the boundary layer.

The boundary layer grid of figure 4 is used only partially by GBL. For each 4 station,
GBL determines the approximate number of grid points that span the boundary layer and
stores it in the grid index array NDT0. This is done for two reasons. First, why waste
computer power on grid points which are clearly outside the boundary layer? There is
however a glitch with this approach. The finite difference algorithm requires the
streamwise velocity from adjacent stations to compute the convection derivatives, and at
times, these values are from points outside the boundary layer. It is then necessary to
update the value of points outside the NDT( boundary. For the momentum and energy
equations, outside values are set equal to the value at NDT0. In most cases, this is
acceptable because the NDT0 boundary varies smoothly from station to station.

0.5

S0.0

-0.5

0 5 0.0 0.5 1.0 1.5 2.0

X coordinate

Figure 4. Boundary layer grid, in Cartesian coordinates, formed from a subset of the
Navier-Stokes grid.

The second reason to restrain the computations to NDT0 points only is related to the
continuity equation. The boundary layer equations are not applicable to the flow outside
the boundary layers and wake, where they predict constant streamwise velocity gradients
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in the outer flow. Integration of these gradients with the continuity equation yields
unbounded normal velocity i and leads to instability of the numerical algorithm. It is
then necessary to neglect the values of i1 outside the NDT( boundary.

Adaptive Boundary Layer Grid

The previous grid has only a small number of grid points in the leading edge region.
This may affect the accuracy in the upstream region and the resulting errors are
propagated downstream due to the parabolic nature of the equations. An "adaptive" grid,
where the word adaptive indicates that scaling of the grid is such that an approximately
constant number of points span the physical boundary layer at any station, may increase
the accuracy in the leading edge region and improve the overall accuracy of the code.

Several schemes were studied to generate an adaptive boundary layer grid. The one
selected uses the Navier-Stokes grid as an inderlay. This ensures the orthogonality
characteristics of the Navier-Stokes grid are retained in the boundary layer grid, an
important fact near the trailing edge. The overlay property also reduces the interpolation
of the Navier-Stokes data onto the boundary layer points to a single dimension. An
example grid is shown in figure 5.

I * I ' * I

0 25

0 0.00
0 =ow
-0.25

I . . I * . I

0.0 0.5 1.0

X coordinate

Figure 5. Adaptive boundary layer grid in Cartesian coordinates

The upper limit of the adaptive grid, in the direction normal to the surface, is generated
from the turbulent flat plate boundary layer thickness distribution of equation (2-9) and

UNCLASSIFIED



UNCLASSIFIED
14

0.010

0.005 Demonstration grid for NACA 0012

airfoil at 1.490 angle of attack. The76
stagnation point is slightly below the

0.000 leading edge.
°- Stagnation

-0.005

-0.010

-0.005 0.000 0.005 0.010

X coordinate

Figure 6. Adaptive grid details near the leading edge

0.010

0.005 Demonstration grid for NACA 0012

airfoil at 1.49 ° angle of attack. The
•0 - grid overlays that from ARC2D.
o 0.000

-0.005

-0.010

0.990 0.995 1.000 1.005 1.010

X coordinate

Figure 7. Adaptive grid details near the trailing edge
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the appropriate freestream conditions. This is adequate to approximate the growth of the
boundary layer over the airfoil. Recall that a flat plate experiences zero pressure gradient
throughout while an airfoil experiences a strong negative pressure gradient over its
forward portion followed by a positive pressure gradient, sually starting near -'e point
of maximum thickness. Therefore, the flat plate distribution overestimates the growth of
the boundary layer near the airfoil leading edge while the opposite is true aft of the point
of maximum thickness. Hence, to ensure that the grid spans the full boundary layer, it is
necessary to multiply the flat plate distribution by the factor f" which assumes a value
between 1.5 and 5 depending on the angle of attack. It should also be noted that the
variable s is defined as the arc length, measured from the upstream stagnation point,
along the airfoil surface or wake centerline. In the wake region, the value of S gets larger
than is intended with the formula of equation (2-9). Use of the square root of s results in
a more realistic approximation to the growth of the wake.

The first grid point above the surface is set at a constant distance n-min in the range
1xiO- 5 to 1lxlO - 7 . This number is based on the assumption of unit chord. From
experience gained with Navier-Stokes codes, it is known that locating the first point in
this range results in computed value of n+ near or less than one. In the present boundary
layer code, the user specifies the distance of the first grid point above the airfoil surface.
This value remains constant for all streamwise stations. Since the upper limit at each
station grows as one moves downstream, while the number of points across the boundary
layer remains constant, the stretching factor of equation (2-11) to locate the KBL-3
points between n 2 and hKBL is recomputed at each station. The resulting values are used
to interpolate the (.,5) coordinates of the boundary layer grid from the Navier-Stokes
grid.

Special treatment of the stagnation point is required because equation (2-9) is singular
when i is zero. The upper grid limit is then computed from a linear extrapolation of the
neighbouring points. Figure 6 shows the result. The grid lines obtained near the trailing
edge are shown in figure 7.

Grid generation schemes other than the one above were studied, but were not found to be
as successful. For example, computing the upper boundary distance by using the
Navier-Stokes data to estimate local boundary layer thickness does not work well
because there is no clear distinction between the boundary layer and the inviscid flow
region. An attempt to compute the location of the first grid point above the surface using
the wall shear stress was also made, but was not found to provide reliable results near the
stagnation point and in regions of separated flow. It was therefore concluded that,
although not optimal, the above grid generation scheme yields a smooth grid and does it
efficiently.

After generating the Cartesian grid coordinates (i-, ), GBL transforms them to body
conformal coordinates ( ,h) as required by the current boundary layer scheme. The x
coordinates are obtained from integration of the rT = I lines. For any given station, the
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value of remains constant. The s = 0 coordinate is located at the leading edge
stagnation point with the positive coordinates corresponding to the upper surface of the
airfoil. The n coordinates, defined to be zero on the airfoil surface or wake centerline,
are obtained by integrating each line from the 71 = 0 point.

The integration process to generate the body conformal coordinates is equivalent to
unwrapping the Cartesian grid such that the rI -- 1 line is straight. It also means that il
lines above the surface are compressed (their total arc length is reduced) in the process,
but this is neglected because the boundary layer normal dimensions are very small when
compared to the streamwise dimensions. A typical body conformal grid is shown in
figure 8.

NOTE: Not toscl
0.075

0.075Stagnation point
0.050

00.025

C
0.000 Tr ii gedges A

-0.025

-1.000 -0.500 0.000 0.500 1.000

s coordinate

Figure 8. Boundary Layer grid in body conformal coordinates
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COMPUTATIONAL TOOLS

Several computational tools are essential to the success of the boundary layer algorithm.
For example, one tool is required to compute the metrics of the transformation when
mapping the physical grid to the computational grid. Other tools transform the velocity
components from one coordinate system to another, compute vorticity, or implement the
Baldwin-Lomax turbulence model I1 (suitably modified for the body conformal
coordinate system used in GBL). The main algorithm requires the solution of linear
systems of equations at each streamwise station; a tridiagonal solver is used for the direct
mode while the inverse mode requires a modified version of the same algorithm. Finally,
other tools yield an estimate of the convergence of the algorithm.

Metrics of the Transformation

Use of the Cartesian (ij) or body conformal ( ,h) grid coordinates to solve the boundary
layer equations increases the complexity of the finite difference algorithm because the
spacing between points is not uniform. It is preferable to transform the equations to
solve them on a uniform grid with unit spacing in both directions. This increases the
complexity of the equations through the addition of metric terms, but simplifies the finite
difference approximations to the derivatives and results in an overall gain in
computational efficiency.

The physical grid points are mapped one-to-one to the computational grid with
coordinates ( ,T1). The only exception, for the C-grid used in the present study, is the
wake cut where each physical point is mapped to two computational points. Conversely,
one can think of it as two computational points that overlap in the physical grid. Figure 9
shows an example of the physical (body conformal coordinates) and computational grids.

Body-Conformal Computational

n

Figure 9. Body conformal and computational grids

As mentionned above, the transformed equations contain metrics of the transformation
( , i, . and 71y) which must be determined numerically. This would normally involve
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finite differences using the physical grid for which the and 7l coordinates corresponding
to each point are known. However, these computations use unequal grid spacing once
again, exactly what we are trying to avoid. It is more practical to approach the problem
from the other end. The physical coordinates corresponding to each (t,r1) line intercept
in the computational domain are known, so why not compute the derivatives r, XI, Y
and Yn using the computational grid, and then compute the metrics from these? All that
is required is the following relation linking the computational plane derivatives to the
metrics.

The functional form of the computational variables is

t = W(3-1)

Using the chain rule, differential increments in the computational domain, d4 and dl, are
linked to increments di and d in the physical space, i.e.

dali = [ I :J[ dJ (3-2)

The role of the dependent and independent variables may also be reversed, i.e.

i =i(g,n)
=Y({,rl)(3-3)

for which the differential increments relation is

= [X Yi dl (3-4)

Solving this last equation for d4 and dil in terms of di and d., and equating with
equation (3-2), results in the relation
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which, in its expanded form gives the metrics

X J-j ,
1-y (3-6)

where J, the Jacobian of the transformation, is defined as

J = Gny4 - Y4X )

Cartesian to Body Conformal Velocity Transformation

During the initialization process for airfoil computations, GBL reads the ARC2D file
inputs. These are in Cartesian coordinates, while GBL uses body conformal coordinates
for its computations. Scalar quantities, such as state and energy variables, are
independent of the coordinate system used, but vector quantities (such as velocity or
momentum) are not and must be transformed from one coordinate system to another.
The transformation requires the cosine angles relating the two coordinate systems. They
are defined from the assumption that during grid generation, points at a given station
were located on the normal to the airfoil surface (see Figure 10), with the minor
exception of a few lines in the trailing edge region as discussed previously.

7 = constant line

y X rl=I line

Figure 10. Rotation angle to transform velocity components
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The metrics of the transformation rj and 1I5, mapping the Cartesian grid coordinates to
the computational domain, are then the i and components of the vector 11 normal to the
airfoil surface. The angle 0 represents the rotation angle between the Cartesian and body
conformal coordinate systems. Using the metrics, the sine and cosine of 0 are defined as

coso =T 1 /
x +11Y(3-7)

sinO = ( U 2),

These trigonometric quantities relate the Cartesian and body conformal components of
the velocity vectorVthrough the equations

Ub = ic cosO + ii, sinO

U b =- i sinO + i cos0 (3-8)

The inverse relations are

= Ub cosO - i3 b sin0

Uc = 4 sinO + i b Cos0 (3-9)

The transformation sine and cosine angles are computed during initialization and stored
in arrays SINANG0 and COSANGO. The transformation from Cartesian to body
conformal coordinates is handled by subroutine UVTC2B while the inverse transform,
used during output, is done by subroutine UVTB2C.

Vorticity Computations

During initialization of airfoil cases, the vorticity is used to interpolate the ARC2D data
in the rl direction, for each station, to find the location where the magnitude of the local
vorticity 6 is less than or equal to the user supplied cutoff value I c,,, I. The vorticity is
defined in terms of Cartesian velocity components. In its non-dimensionalized form, it is

()i Ni
- -(3-10)

UNCLASSIFIED



UNCLASSIFIED
21

The metrics of the transformation from Cartesian to computational coordinates are used
to replace the i and derivatives and result in the expression

6= 0.5[ 70 + % r - 5u - T15iur1 (-1w=.Ri Tj-;i (3-11)

which is evaluated with centered differences wherever possible. At the boundaries,
backward or forward three point differences are used.

Turbulence Modelling

The turbulent flow equations are derived from the laminar flow equations by replacing
velocity, pressure, density and temperature by the sum of their mean and fluctuating
components, i.e. i = W + u', p =,p + p', etc. A time average of the equations is then
taken and negligible terms are dropped. The resulting equations are identical to those for
laminar flow except for additional terms such as the Reynolds stresses -pu' '. These
express the increased diffusion characteristics of turbulent flow.

The computational algorithm of GBL applies to laminar as well as turbulent flow
provided the increased diffusion is considered. For the momentum equation, the
viscosity g is replaced by the sum of the molecular viscosity 1-m, obtained from
Sutherland's formula, and a turbulent viscosity jtt which replaces the Reynolds stresses.
In the energy equation, the ratio P/Pr is replaced by tm/Pr,,, + itt/Prt where Prm = 0.72
and Prt = 0.9 are the laminar and turbulent Prandtl numbers, respectively. A turbulence
model is required to evaluate 9tt.

The Baldwin and Lomax i l l model is widely used with the thin-layer Navier-Stokes
equations. It uses a two layer algebraic eddy viscosity model to evaluate tt. In the inner
region, near a solid wall, it uses the Prandtl-Van Driest formulation. In the outer region,
and in wakes, it uses the Clauser formulation. Transition from one formulation to the
other is done at a crossover point, above the wall, defined as the first point where the two
formulations are equal. The reader is referred to the original paper for the development
and justification of the method.

The original Baldwin-Lomax equations are expressed below in terms of the scaled
variables used in GBL. The inner region formulation is given by

Re.- 1 2. 1 (3-12a)

The variable d is a characteristic length scale of the turbulence defined as
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=0.4 (I - e - n"126 )  (3-12b)

where n' is a local Reynolds number defined as

n+ = i/Reo.--Pr-(3-12c)

In the outer region, the scaled turbulent viscosity is given by

jtt 0 = 0.0168 1.6- - ," FKleb (3-13a)

The function FKkeb(n) is the Klebanoff intermittency factor defined as

FKIeb = [1+5.5 3 1 6(3-13b)
nmax

while the function F., is defined as

Fwae = f ml maxUd f (3-13c)

n~fmaxFmax ,-
Fmax

The quantities nmax and Fmax are determined from the function

n-(h = - 1 -e n / 6  (3-13d)

and the quantity udif is the difference between the maximum and minimum total velocity
in the profile, i.e.

-2 -2 1/2 2 -2 1/2

Udf = (U + 2)max _(u +A %)min (3-13e)
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Interpolation, using a local second order polynomial fit, improves the values of h max and
Fma. In particular, the variation of Fm, is smoother in going from one station to the
next.

The above model assumes Cartesian coordinates. It is modified for use with body
conformal coordinates. First, the Uc and i) components of velocity are replaced by their
body conformal counterparts ub and 0 b. Furthermore, outside the boundary layer edge
defined by the index NDT, jib is neglected because it is unbounded outside this level, as
explained before. This is particularly true near the leading edge region where the Ub
velocity gradient is very strong and the boundary layer is thin.

The second change is the replacement of the vorticity by the normal gradient of ib, i.e.
I C1 I 1 aI / Ni I The behavior of these two quantities is similar with differences in the
magnitude of the terms, but use of the body conformal components compensates for that.

Direct and Inverse Solvers

The direct mode of GBL uses a finite difference scheme with centered or three point
forward/backward difference stencils. The equations are solved at each station, which
results in a scalar tridiagonal systems of equations in the 1l direction, i.e.

[AI1T1= b4

where [A] is a tridiagonal matrix, 5 is the vector of unknowns to be solved for, and B is
the right hand side vector, a known quantity. The efficient Thomas algorithm [ 121 is used
to establish an upper triangular matrix followed by back substitution to yield a solution.
Subroutine THOMAS, presented in Appendix B, solves the above system of equations.

For the inverse mode, the pressure forcing function, which is buried in the right hand side
vector B, must be replaced by an inverse function. GBL implements the inverse forcing
functions of Van Dalsem and Steger151. They apply the momentum equation at the wall or
on the wake centerline to derive an expression to replace the pressure. The resulting
expression is a function of the wall shear stress over the airfoil, and of the wake
centerline velocity in the wake. This yields a modified tridiagonal system of equations
which has non-zero entries in the first column as shown below. A lower-upper
decomposition scheme is used to solve this particular matrix equation; back substitution
is applied to the upper triangular matrix to obtain an intermediate solution which is then
used with the lower triangular matrix and forward substitution to yield the final result.
The subroutine listing is included under the name INVTOM in Appendix B.
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b 2 c 2  U2 d2

f3 b3 C3  U3 d3
f4 a4 b 4  U4 d4

f5 as U5 = d 5

• Cn-3""

Sbn- 2 Cn-2
fA-1 a,_1 bn-1- un-1 dn-1

Convergence Estimates

It is useful to have an estimate of the convergence of the numerical algorithm. GBL
implements two methods to produce such an estimate. The first method takes a simple
difference of representative field variables from one cycle to the next, i.e. variable at time
n minus variable at time n-i. The quantity used for each equation is: i for momentum,
H for energy, and p for continuity. The process involves all points of the field. The
location and magnitude of the largest change is saved and the root mean square for the
entire field is computed. Its logarithm (base ten) is presented, i.e.

AVar = logl 0(RMS) (3-14)

The second method substitutes the variables back into their finite difference equations
after each cycle. As the algorithm converges, the difference between the left and right
hand sides of the equations approaches machine zero. Only interior points are used and
equations (3-14) and (3-15) remain valid. Finally, when interpreting results obtained
from either method, the user must be aware that convergence depends on the magnitude
of Al, the time step used to relax the equations.

UNCLASSIFIED



UNCLASSIFIED
25

INITIALIZATION OF VARIABLES

The numerical method used in GBL requires initialization of the forcing function
variables (~e, w and UW), boundary condition variables (Ue and He) and field variables
(u, ii, U, V, H, p and j). The algorithm uses these initial values to estimate flow field
derivatives and start the iterative cycle. Furthermore, because of to the non-linear nature
of the boundary layer equations, the initial estimates must be representative of the flow
field being computed; otherwise, the method may not converge. This type of behavior is
characteristic of non-linear systems.

GBL supports four initialization procedures, two for test purposes and two for airfoil
computations. The test cases are for laminar flow only. They are Falkner-Skan and
Klineberg flows. The Falkner-Skan case is used to check the direct mode portion of
GBL. The program uses theoretical distributions of pressure and velocity to initialize the
flow field. The Klineberg case is used to exercise the inverse mode portion of GBL. It is a
linearly retarded, mildly separated flow for which the distribution of wall shear stress is
provided. The flow field is initialized with scaled Blasius profiles. It should be noted
that although both cases are valid for laminar flow only; the Falkner-Skan test case can
also be used to check the implementation of the turbulence model. All test case use the
flat plate grid generated internally by GBL (as described in section 2).

The initialization process for airfoil flow is compatible with the ARC2D Navier-Stokes
code. The procedure uses the ARC2D state vector and the corresponding grid to generate
an "adaptive" grid or uses a subset of the Navier-Stokes grid. In the former case, the
ARC2D data is interpolated linearly to initialize field values at the boundary layer grid
points. For the latter case, the ARC2D field data is used directly. A coordinate
transformation is then applied to the velocity data.

Velocity-Pressure Relation at Boundary Layer Edge

The Falkner-Skan test case has Ue(i) prescribed, but the corresponding edge pressure
distribution, /e(s), is unknown. It is the opposite for the airfoil initialization cases. The
surface pressure from the Navier-Stokes solution may be used as e(i) if it is assumed
constant across the boundary layer. However, finding ue(s) is difficult because the
Navier-Stokes solution does not show a clear transition between the boundary layer and
the inviscid flow field. A relationship between ue(s) and e(i) is then required.

The boundary layer effectively displaces the streamlines of the inviscid flow away from
the solid surface by a distance equal to the displacement thickness of the boundary layer.
If this fact is combined with the observation that the pressure remains constant across the
boundary layer, Euler's inviscid momentum equation, which is valid along a streamline,
may then be used to relate the edge velocity distribution 5,(i) to the surface pressure
distribution (s).
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u y Pe
-+ = constant (4-1)

2 y-1 Pe

The above constant is computed by replacing the edge values of velocity, pressure and
density by the freestream equivalents. It assumes the flow is isentropic, i.e. it satisfies the
relation

p = (constant)p (4-2)

which holds true for most subsonic and transonic flows under consideration in this study.
Equation (4-2) is used to eliminate Pe in favor of Pe in equation (4-1). Scaling the
variables in the resulting equation, we obtain expressions linking pressure and velocity at
the boundary layer edge.

-2Y

Pe = (P2 -  2I + -. (4-3)

Ue = [M + p- p P-(pa=Pe) (4-4)
(y- I )p.a. 

44

An expressions to compute the temperature at the boundary layer edge is obtained by
combining the isentropic relationship with the perfect gas law

Te %TI 1 7(4-5)

The temperature is then used to compute total enthalpy at the boundary layer edge

ile cPT.0  a + Ue (4-6)

a2 p 2
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Falkner-Skan Test Case

A flow field is called self-similar when velocity profiles i(si) at different stations
differ only by scale factors in 5 and n. Schlichting1101 (pp.152-156) states the conditions
under which self-similar conditions exist. One class of self-similar flow, studied
extensively by Falkner and Skan1 3 l, is obtained by specifying the boundary layer edge
velocity as

ue(S) = Csm, M = (4-7)

This function describes the potential flow in the neighbourhood of the stagnation point of
a wedge whose included angle is no. The distance s along the surface, is defined to be
zero at the stagnation point. A non-dimensional form of this equation, with the constant
C set equal to u., is used in GBL.

Ue = M~o~l~m (4-8)

With the condition of equation (4-7), the continuity and streamwise momentum equations
reduce to a single ordinary differential equation in terms of the stream function f and its
derivatives with respect to a non-dimensional normal distance .

f"' + aXff" + 3(1 _f,2 ) = 0 (4-9)

subject to the boundary conditions

t=0:f=f'=0 ; =o,:f'= 1 (4-10)

where f' = U_ / Ue

By carefully selecting values of the constants (x and 3, equation (4-9) aporoximates
important existing flows. The constant (x is often set equal to unity; this is the only case
supported by GBL. If the constant P is set to zero, the equation describes flow over a flat
plate at zero incidence. The case 3 = I describes the flow in the viscinity of a two
dimensional stagnation point. Selecting any other values of 1 between zero and one, the
equation describes the accelerating flow in the neighbourhood of the stagnation point of a
wedge. Finally, by selecting small negative values of P3, the equation represents
decelarating flow; separation is encountered at J3 = -0.199. For values of 3 < -0.199,
solutions of equation (4-9) are no longer unique; they are not attempted in GBL.
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The user specifies the self-similar parameter m in the input file (see section 2). GBL uses
this value to integrate equation (4-9) from = 0 to = 10 (a useful approximation to

= oo) with a Runge-Kutta scheme. The integration is sensitive to the second derivative
at the wall, f ', and requires a shooting technique to update this value until convergence
is achieved. The integration scheme yields distributions for the stream function f ( ) and
its derivatives f'( ) andf'.

Subroutine INITO initializes the flow field for Falkner-Skan test cases. The procedure
starts by generating the Cartesian coordinates of the boundary layer grid, which, for this
case, are also the body conformal grid coordinates. The metrics of the transformation are
then computed and equation (4-9) is solved to obtain the Falkner-Skan solution requested
by the user.

The boundary conditions and forcing functions are then computed. The edge velocity
distribution ie() is obtained from equation (4-8) while equation (4-3) is used to obtain
the pressure e(i). Total enthalpy is computed from equation (4-6). The woll shear
stress distribution iw(s) is computed from the theoretical Falkner-Skan distribution, i.e.

"ts)le~wm + 1 Ua* (4-11)
2 v ..

Finally, the wake centerline velocity, which is not used for this case, is set equal to zero.
Having initialized the forcing function and boundary condition arrays, the velocity
components u and u are computed for each grid point. Using the s and n values, the
scaled value is computed from

Ih

n m+l Iieia*j (4-12)
2 v** 1

which is used to interpolate values of f and f'. These values are then used in the
following expressions to compute i and

= Uef (4-13)

i=aI[f+ M-1 [m+l vj la - V2 (4-14)
UCLA + S 2
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The final steps of INITO are to initialize the contravariant velocity components, density
and viscosity throughout the field. For turbulent flow, the turbulent viscosity is also
computed.

Klineberg Test Case

Klineberg and Steger[14 1 used an inverse method to solve the laminar boundary layer
equations for linearly decelerated flows over a flat plate. The wall shear stress
distribution was specified as an analytic function to generate a small region of reversed
flow. Their paper gives an example wall shear stress distributi(

- - 0.33238
t = to  - (S -2)( -6) , 0<i<2 , 6

12- (4-15)
T =O +(+0.1(R-2)( -6) , 2< _6 (4-15)

and the corresponding numerical results.

Routine INIT1 initializes the flow field variables for the Klineberg case. The first
operation is to generate the boundary layer grid and to compute the metrics of the
transformation. The boundary conditions and forcing functions are then initialized.
Klineberg's edge velocity is read from a file, rescaled using the freestrearn Mach number,
and a spline is fit through the data to interpolate values corresponding to the boundary
layer grid. Equation (4-3) is then used to compute the edge pressure and equation (4-6)

for total enthalpy at the edge. The wall shear stress distribution of equation (4-15) is
rescaled as follows for use in GBL

v = [Reue 1/ (4-16)

Finally, the wake centerline velocity, which is not used, is set equal to zero.

Since the Klineberg case starts from flat plate flow, the field velocity components u and ij
are initialized using flat plate profiles generated from the Falkner-Skan equation with
cc = I and P3 = 0. The remaining variables are then initialized. The contravariant velocity
arrays are computed from the metrics of the transformation and the body conformal
velocity components ub and 13b. Density is computed from the perfect gas relation,
viscosity from Sutherland's law, and turbulent viscosity is set to zero.
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Airfoil Cases

Two initialization procedures were designed for airfoil cases. INIT2 uses a subset of the
Navier-Stokes grid as the boundary layer grid, while INIT3 generates an adaptive
boundary layer grid as discussed in section 2. The two procedures are identical with the
following exception: the Navier-Stokes data is used directly in INIT2, but the use of a
different boundary layer grid in INIT3 requires interpolation of the Navier-Stokes data.

The initialization process starts with the input of the Navier-Stokes grid Cartesian
coordinates and the corresponding state vector Q file which contains the non-dimensional
density, x-momentum, y-momentum and total energy at each point, i.e.

PUc (4-17)

The energy , is related to total enthalpy by the relation

= +-(-1 Uc (4-18)p 2

The subscript c on the momentum elements of Q denotes that Cartesian components of
velocity are used. They are used with the metrics of the transformation to go from the
Navier-Stokes to computational grids, and equation (3-11), to compute vorticity. The
metrics are then used with equation (3-7) to compute the rotation angles necessary to
transform the the velocity components to body conformal coordinates, and the velocity
components are transformed.

The magnitude of vorticity is strongest near the airfoil surface and vanishes rapidly as we
move out of the boundary layer. It is therefore used to estimate the location of the
boundary layer edge. The user selects the cutoff vorticity level I6,, I which defines the
edge and GBL interpolates the vorticity data to find this line. The corresponding edge
pressure e and velocity i may also be used as boundary conditions if the user sets the
input variables RSPEDG and RSUEDG equal to 1 in the input file. The user may also
elect to use the surface pressure and the corresponding edge velocity computed from
equation (4-4) as edge conditions. The INIT2 routine may also use the pressure and
velocity at 1 = KBL as boundary conditions; INIT3 does not offer this option.
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The stagnation point is located at the 4 station with the highest pressure. In addition, the
Cartesian grid data is searched to identify the , stations corresponding to the leading
edge and lower/upper trailing edges. The origin of the body conformal grid is then
moved to the stagnation point, so that I I becomes the arc length distance from the
stagnation point, and the metrics of the transformation from body conformal to
computational coordinates are computed. The contravariant velocity components are
also computed at this stage.

The next steps for the initialization are to reset the total enthalpy if the constant enthalpy
option is selected, compute the molecular and turbulent viscosities, and if the user elects,
to reset the velocity profiles at the stagnation and neighbouring points to stagnation
(m = 1) Falkner-Skan profiles. This last option is included in GBL to study the impact of
the upstream conditions on the computations.

Since the user selects the boundary layer edge arbitrarily with tne variable IC,&,I,
additional grid points are added above the previously computed boundary layer edge to
make sure that the grid spans the entire boundary layer. The wake centerline velocity is
then set equal to the ib velocity along the line T1 = I and the edge total enthalpy is set to
the enthalpy at the points 1 = NDT ( ). The wall shear stress forcing function is set to
zero in the wake while, on the airfoil surface, it is computed using a three point forward
difference of the velocity component tangential to the wall, i.e.

, = rly AT' 2 5b (4-19)
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SOLUTION SCHEME

The momentum, energy and continuity equations share a common solution process. The
computational field is swept in a direction, and at each station, an implicit system of
linear equations in the i1 direction is solved. GBL takes advantage of this commonality
to establish three levels of subroutines for the solution process. The highest level
controls the overall solution cycle by calling each equation solver in a particular order.
The second level solves a given equation (e.g. momentum ) over portions of, or over the
entire computational field. Check functions and forcing function updates are also done at
the second level. The third level evaluates specific functions for the equation solvers.
The above structure is illustrated in Figure 11. It provides the flexibility required for the
research framework of GBL. Changes to the formulation, boundary conditions or overall
sweeping schemes are easily implemented by modifying the appropriate modules.
Elements for each level are now discussed.

Sweep Control

State Inverse
Momentum Energy Continuity Variables Mode

Equation Equation Equation & Region
Solver Solver Integration Turbulence Treatment

Model

Function FunctinFnto
Evaluation Evaluation Evaluation

Figure 11. Levels in solution process

Sweep Control Level

The solution scheme developed by Van Dalsem and Steger involves the solution of the
equations in a particular order over a user specified number of cycles. During each cycle,
the solution progresses as follows:
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[1] The streamwise velocity component u is updated for a portion or the full
computational field by solving the momentum equation. The other equations are
solved for the same extent of the field.

121 The contravariant components of velocity, U and V, are updated using their
definition and the latest values of i.

[3] Total enthalpy, Hf, is updated using the energy equation. Alternatively, the
assumption of constant enthalpy may be used.

[4] Density, p, is updated using the latest values of total enthalpy and streamwise
velocity.

[5] The normal velocity component i is updated by integrating the continuity
equation from the Tj = 1 line and using the latest values of the streamwise velocity
components and density.

[61 The contravariant velocity component V is once more updated using the latest
value of i. U does not depend on b and needs no updating.

17] Finally, the molecular viscosity is computed from Sutherland's law while the
Baldwin-Lomax turbulence model is used to update turbulent viscosity.

It is not clear how the computational field should be swept. The parabolic nature of the
boundary layer equations dictates that sweeps be done in a downstream direction, but
how are embedded regions of reverse flow handled? The current sweeping schemes of
GBL attempt to answer this question. Three sweep procedures are incorporated in the
program. One routine, CMPGBO, is used with the flat plate grid to test algorithms. The
user controls the direction and range of the sweeps. The other routines are used for
airfoil cases.

Routine CMPGB1A sweeps a user selected range of the computational field, from one
end to the other, in alternating directions from one cycle to the next. The decision to
alternate sweep direction is based on observations of the behaviour of the algorithm for
flat plate flows. First, the algorithm converges when sweeping the flow field in the
general downstream direction, which is consistent with the parabolic nature of the
equations. When sweeping in the opposite direction, the algorithm remains stable for
two to five iterations and then diverges rapidly. The time step also affects the rate of
divergence. Alternating the sweep direction may present the advantage that every second
cycle, the parabolic nature of the equations is respected in regions of reversed flow.
Hence, if convergence of the algorithm is slowed down because the reversed flow region
is swept against the local flow direction, alternating the sweep direction may improve
overall convergence. Furthermore, alternating the direction of sweep for the entire field
simplifies the overall sweeping scheme.
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The last sweeping scheme, CMPGB1D, uses the pressure distribution provided by
ARC2D to break the computational field in two segments about the leading edge
stagnation point. Separate solutions are obtained for the lower and upper surface
segments with each segment being swept in its general downstream direction. The two
upstream stations, the stagnation and adjacent stations, are fixed to the Navier-Stokes
data. They are not updated, but still influence the solution since they are the upstream
boundary conditions in .

It should be noted that the current approach treats the lower and upper wake separately.
This may lead to a discontinuity of the flow variables at the wake centerline. This is not
considered a problem for the present study and could be corrected in later versions of
GBL. It would involve use of points on opposite sides of the computational domain to
ensure continuity at the wake centerline. Such treatment is not included here.

Equation Level

Solution of individual equations or the update of state variables and the turbulence model
are done at the equation level. GBL also includes a scheme to update the inverse forcing
function tw to match pressure at the edge. Recall from section 3 that, for isentropic
flows, pressure and velocity are related at the edge. The current update scheme matches
Ue in the reverse flow region. The five parts of the equation level are now described
separately.

Momentum equation

The sweep control level sets the range [MINXI,MAXXI] and sweep direction RSWEEP
for the solution of the momentum equation. T1,e actual solution is done in routine
USWEES. For each itation, the following sequence of operations is required. First, the
velocity u is saved to evaluate the time derivative ut and to compute the residuals. For
airfoil cases, the next operation is to set the switch LSMODE to true or false. Selection
of the mode for each station is actually done as part of the inverse mode region update
which are discussed below.

The direct and inverse mode computations are handled by separate blocks of routine
USWEES. Each block evaluates the matrix elements for the tridiagonal or modified
tridiagonal matrix solvers, sets the boundary conditions, and solves the system of
equations. The user has partial control over the boundary conditions. Over a solid
boundary, Dirichlet or zero gradient Neumann (slope equal zero) boundary conditions
may be applied at the lower and upper 1 limits of the profile. In the wake, a zero
gradient Neumann condition is imposed at both boundaries irrespective of the mode. The
user controls the boundary conditions through variables BCDXL and BCDXU for the
direct mode, and through variables BCIXL and BCIXU for the inverse mode.
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The matrix solver returns the solution at time n+l in the vector DT. Under or over-
relaxation is then applied to the solution depending on the factor WX. This factor is
added mostly for convenience and is set to unity for most cases. Note that by updating
the values of i after each station, this data influences the computations at the next station.

Energy equation

Solution of the energy equation is similar to that for the momentum equation. Routine
HSWEES solves the equation on a per station basis for the range and direction set at the
sweep control level. The first operation is to save the solution at time n. The implicit
and forcing term coefficients are then computed, the boundary conditions applied, and
the resulting tridiagonal system of equations solved. The user selects between Dirichlet
and zero gradient Neumann conditions at the lower and upper boundaries through
variables BCDEL and BCDEU respectively. This selection applies to all 4 stations
including those in the wake. The solution may be under or over-relaxed by setting the
variable WH to a value other than unity.

Continuity equation

The continuity equation simply relates the components of velocity and density to ensure
that new mass is not created. Using the i components of velocity and density obtained
from previous steps of the solution cycle, the ij components of velocity are obtained with
an explicit integration process. The value of b is required at one location to start the
integration. In the present case, it is known to be zero on the body surface, due to the no
slip condition, and it is also zero on the wake centerline by definition. The integration
process is carried out in module CINTEG over the range [MINXI,MAXXI]. Direction of
the sweep has no effect.

Although the integration is explicit, the tridiagonal implicit solver is used to solve each
profile. However, only the lower and main diagonals are used, which yields a bidiagonal
system of equations. This means that matrix elements are computed for the upper
boundary of the profile while the Dirichlet boundary condition Pb = 0 is applied at the
lower boundary. Solution of the resulting matrix, using the tridiagonal solver, yields
values of pb for the profile. The values of b are obtained by dividing the matrix solution
by the local density. Values of the contravariant velocity V are also updated at the same
time. Note that the other contravariant velocity component, U, does not depend on i and
need not be updated.

State variables & turbulence model

The state variables, ~ and jm, are properties of the flow which depend only on the local
level of energy, i.e. H, /, and the velocity components. Th-;ir computation is done on a
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point-by-point basis within the range [MINXI,MAXXII and without need to sweep in a
particular direction. The perfect gas law is used in routine UPRHO to compute density.
Routine UPRMM uses SutLcrland's ipproximation, with reference temperature T_ to
compute molecular viscosity.

The Baldwin-Lomax turbulence model is used in routine UPRMT to compute turbulent
viscosity. This process involves all points in a given profile because the maximum
velocity differential must be computed. Only stations in the range [MINXI,MAXXII are
updated.

Inverse mode region treatment

Routine SCHECK is an algorithm to detect regions of reversed flow on the airfoil. The
airfoil surface is scanned from the lower trailing edge to the upper trailing edge, omitting
the forward stagnation point (i.e. a zone cannot include the leading edge stagnation
point). For each scan, temporary pointers are set, based on the velocity gradient at the
wall, to mark the beginning and end of up to four zones of reversed flow. These are
normally found immediately after a shock wave or near the upper trailing edge of a
transonic airfoil at positive angle of attack. The location of the temporary pointers is
then compared to that of permanent pointers and adjusted only if a zone expands.
Allowing the reversed flow region to shrink results in oscillations and non-convergence
of the code.

Having identified the regions of separation, routine UPTAUW updates the inverse
forcing function lw if the user has enabled the pressure matching option (LSPMAT =
true). This algorithm updates the wall shear stress according to a formula proposed by
Van Dalsem and Steger, 61

ii 1= ii Tw Iw ( e - NDT) (5-1)

The inverse forcing function is not updated after every cycle because a change of tw
often produces perceptible changes of the velocity profile over several iterations, and
changing the forcing function too soon leads to instability of the algorithm. The logic to
decide when to update iw is incorporated in routine UPFORF. It monitors the variation
of UNDT from one cycle to the next, and updates iw only if the percentage change is less
than a user supplied value UECHK, but not before three iterations have been completed.
This last condition results from experience gained with GBL, i.e. that as a rough rule-of-
thumb, at least three to five iterations are required before updating the forcing function.
The problem with this method is that the tolerence UECHK must be fairly coarse during
the initial cycles to allow more adjustments of iw, but gradually tightened as
convergence is achieved. To partially correct for this, the user stipulates the maximum
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number of iterations, MAXCNT, beyond which the forcing function is updated. Once
the value of 1NDT has converged to ue within a user supplied tolerance UETOL, say 1/2%,
routine UPTAUW is disabled.

Function Level

The matrix elements are evaluated at the function level, the most basic level of the
current numerical method. Recall that the finite difference molecule yields a tridiagonal
system of equations in ij i81. It results that at each point, the momentum, energy or
continuity equation is conveniently expressed as

Ak,0j, kl + BkOj, k + Ckjk+l = Dk (5-2)

where 8 is i for the momentum equation, H for energy, or u for continuity. A, B and C
are the coefficient of the implicit side while D is the forcing term. For the modified
tridiagonal system of equations used to solve the inverse mode form of momentum, the
above equation becomes

FkE)?!,2 + AkE),k1 + Bk)' + k01,,+1 = Dk (5-3)

Basic functions are used to evaluate the implicit coefficients and the forcing term at a
given station. Since the formulation of each equation changes near the boundaries of
the computational field, different basic functions are used at these locations. This is the
case for the two stations at each end of the flow field. Different forms of the implicit
coefficient B and forcing term D are used for the direct and inverse mode of the
momentum equation. Furthermore, the inverse mode functions for the momentum
equation are different for body and wake stations.

Use of the basic functions makes the algorithm very flexible. Changes to the equations
simply require new basic functions.
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CODE TESTING

This section presents selected results to demonstrate the ability of the code to compute
boundary layer flows. First, a flat plate grid geometry is used to verify coding accuracy
for the direct and inverse mode algorithms. These tests involve laminar flow only. The
implementation of the Baldwin-Lomax turbulence model is then verified by comparing
flat plate computations against experimental results.

The second part of this section presents results from simple numerical experiments to
explore the convergence characteristics of the code. The effect of the time-like variable
and sweep direction are discussed. In the third part, the ability of the code to solve the
equations for an airfoil under attached flow conditions is shown. In the last part, airfoil
results for more challenging conditions, with embedded supersonic and reversed flow
regions, are presented.

Code Verification

The implementation of the algorithms is verified by conducting numerical experiments
and comparing the results to analytic solutions for the direct mode, and to other
computational results for the inverse mode. Each test problem exercises one mode only.
The flow is laminar and the grid is kept as simple as possible, a flat plate in this instance.
Results from this type of problems are very informative with respect to issues as diverse
as grid dependencies, convergence characteristics and accuracy. The test direct mode
test case can also be used to verify the implementation of the turbulence model by
computing a turbulent flat plate flow and comparing the results to experimental data.
Results for the three test problems are now presented and discussed while the
convergence issue is addressed later in the section.

Direct mode test

The direct mode algorithm is verified against laminar Falkner-Skan solutions because a
wide range of pressure gradients, from separation to strongly accelerated flows, may be
simulated. Falkner-Skan flows are also laminar which eliminates uncertainties associated
with the turbulence model and its experimental roots. For the current case, freestream
conditions are selected to yield incompressible laminar flow:

Re- = 116,500
M_ =0.005

T = 288 K

1= 1.0
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Figure 12. Falkner-Skan results for three flow types
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and are kept constant for all Falkner-Skan computations. Similarly, a single grid with 90
streamwise stations and 50 points in the normal direction is used for all cases. It is
generated internally using the parameters:

is = 0.01

Se = 1.00

Ai 0 = 0.0001

fi =0.2

f, =2.5

which yield a streamwise expansion factor e, = 0.0775 and a maximum normal
expansion factor F, = 0.0866 in equation (2-11). Note that the grid starts at = 0.01
instead of i = 0 because equations (4-12) and (4-14) for the variables and ii,
respectively, are singular at this last point. This complicates the initialization of the
velocity profiles locally.

Three cases are computed for values of the self-similar parameter m = -0.08, m = 0.0 and
m = 0.5. These correspond to flow under adverse pressure gradient, constant pressure
flow (i.e. flat plate flow), and accelerating flow conditions, respectively. The theoretical
solutions are used to initialize the flow field variables in each case. To verify that the
numerical solution really converges to the theoretical solution, the initial data is
corrupted by setting the velocity values u and u at all non-boundary points to 98% of the
theoretical value. The boundary conditions and upstream conditions (at the first two
stations) are set to their correct theoretical values. During the solution process, the time-
like variable At is set to 100. Results for the three test cases are shown in Figure 12.
Excellent agreement is obtained between the numerical results and theory which
demonstrates the accuracy of the direct mode algorithm for laminar flow.

In achieving the above results, careful selection of the grid is necessary. For flows subject
to a pressure gradient, it is important to concentrate sufficient streamwise stations to
resolve the pressure terms; otherwise, the accuracy is degraded. This applies to stations
near the leading edge where pressure gradients are strong, and near the trailing edge of
the flat plate, where spacing of the streamwise stations is coarse. Furthermore, near the
trailing edge, the coarseness of the grid even results in different values of the pressure
terms if a thre'-point-backward finite differences is used instead of the centered
difference.

The extent of the grid in the normal direction is also important. If the grid does not cover
the full extent of the boundary layer, the boundary condition is imposed at a location
where it does not apply and affects the shape of the local velocity profile. This problem
is experienced with the flat plate grid generation scheme built into GBL. It is partially
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Figure 13. Klineberg flow results
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eliminated with the use of the f, and f, multiplication factors, but the fact remains that
the growth of the boundary layer grid is that for a constant pressure flow. GBL would
benefit from an improved grid generation scheme, or a truly adaptive grid scheme which
adapts itself to the flow conditions.

Inverse mode test

The implementation of the inverse mode algorithm is verified by computing the laminar
flow over a flat plate subjected to the linearly decelerated flow of Klineberg. Freestream
conditions are the same as those used for the Falkner-Skan test cases, but a different flat
plate geometry must be used for compatibility with Klineberg's results. The grid
generated has 200 streamwise stations and 60 points across the boundary layer. The
parameters are:

Ss 0.03

Re 6.375

A = 0.03

=.5

f 2.0

The number of streamwise stations and the spacing are selected to yield approximately
constant spacing in the direction, thus more stations are present in the reversed flow
region. The flow field is initialized with constant pressure profiles (m = 0) scaled with
Klineberg's edge velocity distribution.

Figure 13 compares the numerical results to those of Klineberg. The skin friction
distribution used to drive the solution is shown in figure 13(a) while figures 13(b) and
13(c) show the corresponding edge velocity and pressure gradient results. The computed
edge velocity matches the Klineberg results very closely, which is noteworthy since the
momentum equation uses a Neumann boundary condition at the upper T1 edge. The
pressure gradient, defined as

- j de

ire d is

differs in the reversed flow region. However, comparison of the current results with
those of Klineberg is difficult because the above pressure gradient derivative is computed
from the numerical results. In particular, the evaluation of the term d ue /dR depends on
the grid and the grid used in the current method is very different grid than the one used

UNCLASSIFIED



UNCLASSIFIED
44

7.0

5.0.0

2.0.0

1.0.0

1.0 2. 3.0.00.06.

25 Re0. 257

2.0

C4

1.0

00. . . . 1 . . I . . .

0. .0 1.5 2.0 2 . 3 .0SNn-imnsonl eigt.FiurF1.gurben.trflamlates flow - Andere exprien

30 . UNCLASSIFIED



UNCLASSIFIED
45

by Klineberg; a body conformal grid with clustering of the ril lines near the wall is used
here, while Klineberg uses a uniform grid with coarse spacing since his method exploits
transformed variables instead of scaled variables.

Figure 14 presents the streamlines computed for the current computations. They
correspond closely to the results of Klineberg and show that GBL captures the salient
features of the flow.

Turbulence model test

A test of the turbulence model implementation is carried out by computing the flat plate
flow measured by Andersen 151. The experimental conditions for this flow are:

Re- = 6.5x105

M =0.028

T- = 293 K

1= 1.0

Andersen used a wind tunnel with a 2.44 meter long working section to simulate flat
plate flow and measured the mean velocity profiles at various streamwise stations. In the
current computations, the flat plate is approximated by a grid with 90 streamwise
stations, 50 points across the boundary layer and the following parameters:

Ss=0.01

Se = 2.44

A50 = 0.005

=0.5

= 1.3

The flow field is initialized with the laminar flow variables. The momentum equation is
solved with a Dirichlet condition at the upper boundary in Ti. Andersen presents his
results in boundary layer coordinates u and n' which are defined as

+ [ , ur = (6-4)
U

U't
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Figure 16. Dependence of convergence on the magnitude of the forcing function term
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Figure 17. Effect of the momentum equation solver and viscous terms on convergence
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n+ = u.,n (6-5)
V

Andersen's results are for Re0 = 2570, where Reo is the Reynolds number, based on the
momentum thickness. In figure 15, the GBL results are compared for two profiles. For
the first profile the Reynolds number is matched while for the second profile, the value of
u is matched at the upper edge of the flow. Fairly good agreement is obtained between
the experimental data and the GBL results.

A Word on Convergence

The convergence characteristics of the boundary layer equations are difficult to quantify
due to their non-linear character, the number of factors involved and the coupling
between some of these same factors. The author has nevertheless gained sufficient
experience with GBL to identify the major convergence characteristics of the code. Two
basic mechanisms are at work. The first one is a convection mechanism which acts while
a particular equation is being solved to update a given variable, e.g. u . At any given
station, solution of the variable is affected by the upstream values of i since the finite
difference to its derivative involves upstream values of u. Recall that while solving this
equation, all other variables are kept constant; only the values of the i field are modified.
The second mechanism is more difficult to identify. It involves the interplay between the
different equations, i.e. how the solution of the momentum equation affects the solution
of the energy equation, and so on.

Both mechanisms are affected by the sign and/or magnitude of the convective, viscous
and time-step terms. Furthermore, the convective and viscous terms are coupled while
the effect of the time-step terms is separate. Examples are now presented and discussed
to indicate the role of the above factors.

Convective and viscous terms

Convective and viscous terms depend strongly on the streamwise momentum flow field.
The former are function of the magnitude of the streanwise velocity while viscous terms
are function of the normal gradient of the same quantity. As a result, the momentum
equation is the driving force behind the overall iterative scheme. The evolution of the
momentum flow field is itself driven by the forcing function, whether in the direct or
inverse mode. Figure 16 shows the effect of the forcing term on convergence. It is
observed that, at least for Falkner-skan flows, accelerated flows converge faster than
decelerated flows. Separated flows are even slower to converge as demonstrated by the
solution of the Klineberg flow; 400 iterations reduces the residual by only five orders of
magnitude (the same time-step is used for all computations). Based on this result, one
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could speculate that, for airfoil flows, the regions of accelerated flow converge faster than
regions of decelerated or separated flow. Hence, the overall convergence is governed by
the regions of decelerated flow.

Recalling that different forcing functions are used for attached and reversed flow regions,
hence how do we know if the solver affects the convergence? Figure 17 answers this
question. The curves labelled direct and inverse show the convergence histories for the
same flat plate flow solved using the direct and inverse solvers respectively. The two
curves have similar convergence rates which supports the hypothesis that it is the
magnitude and sign of the forcing function which drives convergence, not the method
used to solve the momentum equation. The third curve of Figure 17 shows the
convergence for the computation of the Andersen flow. It uses a different grid than the
other curves, but it has the same time-step. It is included to demonstrate the effect of the
turbulent terms.

The slope of the turbulent curve is less than for the laminar curve, which indicates that
the turbulent terms decrease the convergence rate of the algorithm. These terms
contribute to the magnitude of the elements of the left hand (or implicit) side of the
equation only. The relative magnitude of the forcing term, located on the right hand (or
explicit) side of the equation, is therefore decreased and the overall convergence is
slower.

Another factor may be responsible for the slower convergence of the turbulent flow case
with respect to the laminar flow cases: the quality of the initial guess. Assuming that
convergence is rate limited, which it appears to be for a given time step and forcing
function, more iterations are required to decrease the residual to machine zero when the
initial guess is further away from the solution. For the turbulent case of figure 17, the
initial guess is a laminar solution, which is quite different from the converged solution.

Figure 18 shows the typical relation between the momentum, energy and density
residuals. The three variables converge to different values, which reflects the sensivity of
each variable on the others, i.e. energy and density are less sensitive to changes of the
velocity than velocity to changes of density or energy. More importantly, each equation
requires a different number of iterations 'o converge with the convergence of the
momentum flow field lagging that of the energy and density fields. This is a clear
indication of the presence of a mechanism oetween the various equations.

Alternating the direction of sweep produces a sawtooth convergence history as illitrated
in figure 19. The scheme convergc:s while sweeping in the downstream direction, but
diverges in the upstream direction, at least for the time-step used. In fact, it is the
experience of the author that the scheme is unconditionally stable when sweeping in the
downstream direction, but only conditionally stable when sweeping in the upstream
direction.
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For the flat plate case, the stability margin lies near the unit time-step value. Figure 20
compares the effect of downstream and upstream sweeps for this case. The downstream
case converges slowly while the upstream case shows an increasing rate of divergence
over the first fifty iterations, and then levels out to a large value. The flow field variables
display an oscillatory behaviour. For smaller time-steps, the scheme converges, albeit
very slowly (thousands of iterations) and at the cost of a loss in accuracy, as will be
discussed in the "Time-step terms" subsection below.

Alternating the direction of sweep does not improve the convergence of the Klineberg
case either. The reversed flow region is so small with respect to the attached flow field
that any local convergence improvements cannot influence the overall convergence.
Hence, there is no gain from alternating the direction of sweep. Then, why is the
reversed flow region converging at all when all sweeps are in the downstream direction
and the time-step is large? The answer resides in the magnitude of the contravariant
velocity U. As a general rule, the magnitude of U is small in the separation bubble, thus
the influence of the convective terms is reduced locally. One may speculate that it is this
characteristic which allows the overall scheme to converge.

Time-step terms

The time term splits in two components, one on the implicit side of the equation, and one
on the explicit side. On the implicit side, it increases the diagonal dominance of the
system of equations. On the explicit side, it impresses the value of the flow field variable
at the previous time step (i.e. u , H or (pjo) n ) on the forcing function. For downstream
sweeps of the laminar flat plate flow, the net effect of decreasing the time-step is to slow
convergence, as shown in fi ure 21. As the magnitude of the time-step is decreased by
orders of magnitude from 10" to 10- 3, more and more iterations are required to converge.
Ultimately, a lower limit for the time-step is reached beyond which the accuracy is
degraded because the time term overwhelms the forcing term and truncation error sets in.

Airfoil Case - Attached Flow

The ability of the code to compute attached flow conditions over an airfoil is examined
by computing the flow over a NACA 0012 at M - = 0.7 and o: = 1.490. This test case,
used by Holst I161 to compare several computer codes, produces attached flow over the
full extent of the airfoil. It is mildly transonic with a maximum local Mach number of
1.04 near the 17% chord location.

The present results are for the standard configuration of the code with flow checks to
detect regions of reversed flow, but without the algorithm to update the wall shear stress
distribution in regions of reversed flow. The boundary layer grid is formed from a subset
of the ARC2D grid and the initial flow data is from a converged ARC2D solution.
However, the velocity data is multiplied by 0.98 to verify that GBL recovers the solution.
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Figure 22. Comparison between GBL and ARC2D velocity profiles for attached flow

case

UNCLASSIFIED



UNCLASSIFIED
53

Downstream sweeps are used to solve the equations and the solution is limited to the top
surface of the airfoil in the interest of clarity. Note that the lower surface is easier to
solve and does not generate new knowledge about the code. Finally, only airfoil stations
are used since the 1 = 1 line does not overlap the wake centerline.

For the first set of results, the ARC2D surface pressure is used as the forcing function to
GBL. The edge velocity, used as the upper boundary condition for the momentum
equation, is computed from the velocity-pressure relation of equation (4-4). This case
converges smoothly to machine zero in 125 iterations. Figure 22 compares the resulting
velocity profiles to the ARC2D solutions at 15, 25, 35, 50, 75 and 95% of chord. Very
good agreement is obtained for all stations except near the trailing edge where there is a
small difference in edge velocity. This occurs because the code detects flow reversal
over a very small range near the trailing edge, and switches to the inverse flow solver at
these stations.

The reversed flow region is predicted because an appreciable normal pressure gradient
exists near the trailing edge, but it is not accounted for by GBL. To correct for this
condition, the pressure is interpolated from ARC2D at the approximate boundary layer
edge. However, how do we find the edge? To answer this, we must consider the
vorticity field around the airfoil. Recall from the airfoil initialization section that vorticity
is present only within the boundary layer and that its intensity is largest near the surface.
As we move out of the boundary layer in the normal direction, it decreases by several
orders of magnitude until it vanishes. Figure 23 shows this variation for the present test
case. It is observed that the curve with the value I 01 = I corresponds closely to the
boundary layer edge. The resulting pressure distribution is compared to the surface
pressure in figure 24. The normal pressure variation near the trailing edge shows clearly.
GBL does not predict separation with the new pressure distribution and the velocity
profile results near the trailing edge are improved.

In another test run, the airfoil flow is solved using the inverse mode at all stations. The
wall shear stress forcing function is obtained from a three point approximation of the
Navier-Stokes data near the surface. This solution requires 35 more iterations than the
direct mode case and the resulting velocity profiles are not accurate. Figure 25 shows
that the edge velocity distribution is not captured. When run with the edge velocity
matching option, the same case converges to the correct solution in 300 iterations. The
larger number of iterations is required because each adjustment of the forcing function is
equivalent to restarting the computations; an acceptable wall shear stress distribution is
obtained in about 150 iterations. The matched edge velocity is within half of a percent
and the resulting velocity profiles are essentially identical to those for the direct mode
case. The final wall shear stress distribution, shown in figure 26, differs only slightly
from the initial distribution, mostly in the supersonic bubble and immediately aft of the
shock.
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Figure 23. Vorticity contours of attached flow case extracted from ARC2D3 solution
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Figure 24. Comparison of surface pressure to pressure along vorticity line I (oI =I
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Figure 25. Direct and inverse mode values of edge velocity
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Figure 26. Initial and final wall shear stress distributions for match of edge velocity
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Figure 27. Velocity profiles for adaptive grid, direct mode
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In the above inverse mode test case, one must be careful in selecting the pressure
distribution to be matched. The wall shear stress forcing function is derived by applying
the momentum equation at the surface and therefore, it represents surface pressure.
Using the pressure distribution of the vorticity line I o I = 1, even though it is almost
identical to the surface pressure (see figure 24), results in a substantial change (=25%) in
the computed wall shear stress.

The above direct mode cases were run on a subset grid from ARC2D, but an "adaptive"
grid can also be used. Such a grid is generated by GBL to overlap the ARC2D grid with
the parameters Aumi, = 10-5, fj = 1.0 and f, = 3.5. The maximum number of points
across the boundary layer is 45. Using this grid with the pressure distribution on the
I co I = 1 line, GBL switches to the inverse mode for all stations aft of 60% chord
immediately upon completing the first iteration. As a result, the edge velocity is not
matched for these stations, but the velocity profiles are nevertheless acceptable.

The early switch to the inverse mode is traced to the corrupted data which yields poor
estimates of the derivatives initially. It is corrected with a slow start procedure, i.e.
under-relaxation factors are applied to the equations over the first ten iterations. For the
first iteration, the under-relaxation factor is 10%, and it is increased by 10% upon each
successive iteration. Figure 27 presents the resulting velocity profiles. They agree very
well with those of ARC2D, although the normal pressure gradient effect can still be seen
near the trailing edge. These results indicate that an improved adaptive grid scheme may
benefit the code since all field points could be used; however, under-relaxation is
required to start the computations to avoid tripping the inverse mode. The broad range of
flow conditions may also make it difficult to find suitable criteria to adapt the grid.

Airfoil Case - Separated Flow

Two separated flow test cases are now presented. First, a NACA 0012 airfoil at 3'
angle-of-attack and M_ = 0.70 is considered. This flow, previously computed by
Maksymiuk et al. 171, accelerates rapidly over the leading edge to create a supersonic
bubble with a maximum Mach number M = 1.2. It decelerates through a shock at -33%
chord and immediately separates at the base of the shock. The separation, however, is
small and the flow reattaches immediately up to a point near the trailing edge where it
separates again. It is not clear that the trailing edge separation exists physically; it could
be an artifact due to the local skewness of the grid. Finally, transition from laminar to
turbulent flow is fixed at 5% chord.

A subset of Maksymiuk's Navier-Stokes grid is used as the boundary layer grid. The
maximum number of points allowed through the boundary layer is 40. The computations
are restricted to the airfoil upper surface with all sweeps done in the downstream
direction. A Dirichlet condition is used at the upper rl boundary of the momentum
equation in direct mode regions while a Neumann condition is used for the inverse mode.
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Figure 28. Velocity profiles for Maksymiuk case, velocity matching not enabled
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Velocity matching is not enabled in the inverse regions and the forcing pressure
distribution is from the vorticity level I6u t 1 = 1.0.

The velocity profiles for the 15, 25, 33, 50, 75 and 95% chord stations are shown in
figure 28 while figure 29 presents the corresponding edge velocity results. The edge
velocity distribution is very close to the direct mode distribution, but it is still not fully
captured around the shock and results in significant differences in the local velocity
profiles. GBL still predicts good velocity profiles for most stations. Use of velocity
matching in the inverse mode region results in a decrease of the iw forcing function aft of
the shock (see figure 30) and a velocity defect of the local profiles as shown in figure 3 1.
However, GBL recovers well and velocity profiles downstream of the shock compare
well with those from the Navier-Stokes solution.

The matching process is slow and requires much user interaction. For this case, it is even
doubtful that it fully works since it was required to relax the matching criteria UETOL to
1% to obtain convergence. In other words, the matched solution is not much better than
the one without velocity matching. From these results, it appears that GBL has difficulty
in handling shock waves. The code may have much to gain from the application of a
Reimann problem at the shock, but this matter is not addressed in this work.

To further investigate the behaviour of GBL near shock waves, a second separated flow
case is used. Proposed by Holst 161, it involves a NACA 0012 airfoil at 8.34' angle-of-
attack and a freestream Mach number M- = 0.55, which results in a very strong
acceleration of the flow around the leading edge to a maximum Mach number M = 1.34,
and a strong shock at 13% chord. The deceleration of the flow through the shock induces
a substantial separation bubble at its base, followed by reattachment and a second
separation zone at the trailing edge. The second separation bubble is due to the strong
adverse pressure gradient present on the top surface of the airfoil. Laminar to turbulent
transition is fixed at 5% chord for the computations.

To compute this flow, GBL is used without the velocity matching option and with the
standard reverse zone detection algorithm. Dirichlet and Neumann boundary conditions
are imposed at the upper rI limit of the momentum equation for the direct and inverse
modes, respectively, and the boundary layer grid is generated from a subset of the
Maksymiuk Navier-Stokes grid with a maximum of 45 points in the normal direction.
The vorticity level I .o,, I = 0.5 is used to determine the edge of the boundary layer.
This value was selected after examination of the vorticity contours of the ARC2D
solution, as depicted in figure 32. Note how the shock wave causes a large increase of
the boundary layer thickness and a corresponding increase of the magnitude of vorticity.

The upper edge velocity is set from the vorticity level I I = 0.5, but surface pressure
is used as the driving force. It is interesting to see, in figure 33, how much pressure
varies across the boundary layer near the shock. The normal pressure gradient is already
significant twenty pointq above the surface, which is still well within the boundary layer.
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Figure 29. Comparison of edge velocity for Maksymiuk case, velocity matching not
enabled
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Figure 30. Change of inverse forcing function to match edge velocity with the
Maksymiuk case
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Figure 31. Velocity profiles for Maksymiuk case with edge velocity matching
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Figure 32. Vorticity contours for NACA 0012 airfoil at a = 8.340, M-. 0.55
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Figure 33. Variation of pressure across the boundary layer near the shock location
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This pressure variation is responsible for the convergence problems of GBL near strong
shocks and special handling of the shock region is required. This conclusion is also
reached because GBL converges well and produces velocity profiles in good agreement
with the Navier-Stokes solution when it is run with only stations ahead of the shock, or
only station aft of the shock.

When the shock region is included, GBL produces the velocity profile results of figure
34. Note how a negative edge velocity is obtained for profiles near the shock wave.
Recall that the surface pressure is used to drive the solution, hence this is a direct result
of the normal pressure variation. These major changes to the profiles in the shock region
propagate downstream. GBL recovers somewhat from this condition, but never
completely; as it now thinks that the boundary layer edge is well within the grid limits.
Conversely, it is possible that the grid is too large and the edge velocity condition is then
taken well outside the range of validity of the boundary layer equations. This
observation is supported by the good match of the GBL profiles with the Navier-Stokes
solution near the wall for most stations aft of the shock location. The profiles in the
trailing edge region disagree completely with the Navier-Stokes results, but this is not too
surprising since the upstream velocity defect is compounded with a second separation
zone in that region.

Interesting results are obtained when GBL is run with a grid made up of only the first
twenty grid points in the normal direction. The edge velocity at the twentieth point is
imposed as a Dirichlet boundary condition on the momentum equation for both the direct
and inverse mode regions. The surface pressure is still used as the driving function.
Figure 35 shows good agreement with the Navier-Stokes solution, even in the shock and
trailing edge regions which are solved with the inverse mode. Use of GBL in this
manner will be acceptable when it is integrated with the Navier-Stokes code to produce a
Fortified Navier-Stokes procedure.
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Figure 34. Velocity profiles for separated flow case of Hoist - regular algorithm
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Figure 35. Velocity profiles for separated flow case of Hoist -algorithm limited to
twenty points
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CONCLUSIONS

The current work is aimed at achieving two principal goals. First, to develop a flexible
research tool to study the behaviour of the Steger and Van Dalsem algorithm for solving
the boundary layer equations, and second, to investigate how the same algorithm may be
used in conjunction with a Navier-Stokes procedure to study the Fortified Navier-Stokes
concept.

With respect to the first goal, GBL is now developed to the point of being a useful
research tool. This report has outlined the main features of the code pertaining to its
input requirements, its various initialization procedures, its solution techniques and
miscellaneous computational tools required by the code. Verification results presented in
the first part of the CODE TESTING section confirm that the algorithm is implemented
correctly and that it is accurate for attached and separated laminar flow. It is also found
that, at least for these simple flows, the algorithm converges faster when subjected to a
negative pressure gradient and that it is slowest in regions of reversed flow. These results
also show that the rate of ,.onvergence of the algorithm depends on the magnitude of the
forcing function, and not on the method used to solve the equations, i.e. standard
tridiagonal solver versus modified tridiagonal solver.

Simple numerical experiments with laminar flows show the algorithm to be
unconditionally stable with respect to the time step used to relax the equations, provided
the flow field is swept in the general downstream direction and that regions of reversed
flow are weak. The algorithm is only conditionally stable when the flow field is swept in
the opposite direction. Small time steps produce convergence, but the number of
iterations required to obtain a converged solution is greatly increased in comparison to a
downstream sweeping scheme. It should also be noted that too small a time step reduces
the influence of the forcing function and degrades accuracy.

Comparison of GBL results against the experimental data of Andersen show that the
Baldwin-Lomax turbulence model is succesfully implemented. it also demonstrates that
selecting an initial guess far from the final answer affects convergence due to the
maximum rate at which the method can converge for a given value of the forcing
function.

Numerical results for the computation of transonic airfoil flows demonstrate the ability of
GBL to solve such flows accurately using the direct, inverse or mixed direct/inverse
modes. In particular, GBL predicts accurate results for fully attached flow conditions
and for cases with embedded supersonic flow and a small separated flow region as long
as the shock wave is weak. Strong shock waves cause an appreciable pressure gradient
across the boundary layer which is not modelled in GBL; hence the present version of the
code fails to compute such a case. The normal pressure gradient which characterizes the
trailing edge region may also cause problems with GBL, but it is easily handled by
selecting pressure from a point above the surface.

UNCLASSIFIED



UNCLASSIFIED
68

Significant progress has been made towards achieving the second goal of the present
work: to develop a Fortified Navier-Stokes code. The framework to transfer GBL results
to the Navier-Stokes code, and vice versa, is now in place. It is also shown that GBL
predicts the velocity profiles accurately when a Dirichlet condition is applied at the upper
boundary of the momentum equation with mixed direct/inverse modes, and the
computations are limited to the portion of the grid nearest the wall (say 20 points).

Future work will concentrate on the integration of the GBL and Navier-Stokes codes and
the development of suitable interaction mechanisms between the two procedures. The
success of the method also hinges on the evolution of the boundary conditions and
forcing functions in the Navier-Stokes procedure.
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APPENDIX A: Sample Input File

GBL Inputs
Value Name Description

9000000. RE Freestream Reynolds number, Re., based on freestream velocity u-

1.000 REFL Reference length (in meters) for Re.

0.70 FSMACH Freestream Mach number, M.

255. FST Freestream temperature in Kelvin

1 RSTURB Turbulence model, 0 for laminar flow and I for Baldwin-Lomax model

0.05 TRANSLO TRANSLO and TRANSUP indicate the chord stations where laminar to

0.05 TRANSUP turbulent transition if fixed. Also used for the flat plate grid generation

3 RSINCO Switch for initial conditions: 0 = FSK, I = Klineberg, 2,3 = Navier-Stokes.

0.10 DTA Variables DTA and DTW allow the selection of different time steps

0.10 DTW for the airfoil and wake stations.

200 ITRN Number of iterations for run ( to 2000)

0 RSUEDG Type of initialization for u. and p respectively, 0 = fron surface conditions,

0 RSPEDG 1 =from interpolation at Iw01 level I_1,2 = from lr line KBL

2 RSRES Residue type, 0 = none, I = equation, 2 = time difference

1 RSGEOM Indicate kind of geometry used. 0 = flat plate, I = ARC2D airfoil grid

15 NXS Number of streamnwise grid stations for flat plate grid generator

45 KBL Number of normal points for flat plate and adaptive grid generators

0.01 XSGRD First coordinate for flat plate grid generator, s,

1.000 XEGRD Last coordinate for flat plate grid generator, s.

0.051 DXSGRD Grid spacing between first and second stations

L 00001 DYMGRD Minimum il sp'.cing for adaptive airfoil grid in INIT3

0.5 FLGRD Multiplication factor for lower limit in grid generators

3.5 FUGRD Multiplication factor for upper limit in grid generators

1.0 WCUT Cutoff value of I wl for interpolation of boundary layer edge conditions

false. LSYMIN The value DYMGRD is imposed on the grid generator lower limit

true. LSGEDG Used in INIT2, select to use NDT with I ol criterion (or fix grid at KBL)
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GBL Inputs (Continued)
Value Name Description

.true. LSMODE The direct mode is used

.false. LSFIXM Only the LSMODE mode is used

false. LSPMAT GBL attempts edge pressure/velo-ity match

false. LSSLOW Slow start is used over the first 10 iterations

false. LSTGFS The stagnation stations are reset to Falkner-Skan profiles

false. LSPNOR The pressure varies in the normal direction

true. LSCRPT The initial velocity is corrupted by CFACT

0.98 C FACT Multiplication factor to corrupt initial velocity data

false. LSGRAP The graphic option is enabled

1 RSWEEP Sweep direction:- I = k_. -) ,0 = alternating. = ,--t ,

.true. LSXMOM The x-momentum equation is enabled

.true. LSUcUP The contravariant velocity fie!d U, is updated

.true. LSENER The energy equation (total enthalpy) is enabled.

true. LSURHO The density is updated

true. LSCONT The continuity equation is enabled

true. LSURMM The molecular viscosity is updated

true. LSU RIMT The turbulent viscosity is updated

0.00 VM Self-similar parameter for Falkner-Skan test case

190 JMINXI Minimum station defining the computational ield, .

352 JMAXXI Maximum station defining the computational field, .

2 JOFFST Offset about each side of the stagnation point

1 JZOFF Number of stations added on each side of the inverse flow zones

0 BCDXL Boundary conditions at the lower and upper r1 boundaries of the x-momentum

0 BCDXU equation in the direct and inverse mode, as well as for the energy equation.

0 BCIXL 0 = Dirichlet condition, I = 0' order Neumann condition (slope is zero)

1 BCIXU

1 BCDEL

1 BCDEU
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GBL Inputs (Concluded)
Value Name Description

1.00 WX Under- or over-relaxation factor for the x-momentum and

1.00 WH energy equations respectively

0.0001 UECHK(4) ior variation below which T, is updated - for each zone

0.01 UETOL(4) Convergence tolerance between ir and i. - for each zone

10 MAXUPD(4) Maximum number of iterations between updates - for each zone

6 J FV Number of stations for output of the velocity profiles (top surface only)

0.150 FVA(0-10) Chord stations to output
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APPENDIX B: GBL Direct and Inverse Solvers
GBL requires two matrix solvers for the direct and inverse mode, respectively. The

direct mode solver, based on the Thomas algorithm, solves a tridiagonal system of
equations, i.e. for a matrix system

BIL CIL XIL DIL

AlL+I BL+I CIL+, XL+ DL+j

AIL+2 BIL+2 CIL+2 XIL+2 DIL+2

AiU Bu XIU DIU

where the coefficients A, B, C and D are provided by the calling routine, and X is the
vector of unknows which is solved for. Upon returning, the solution X is in the D array.
The array of diagonal elements B is also altered. The listing of subroutine THOMAS is
given below.

SUBROUTINE THOMAS(IL, IU,AA,BB,CC,DD)

C... This routine is straight out of the Anderson textbook. It is the

C... standard Thomas algorithm. Solution is stored in DD.

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION AA(1),BB(l),CC(l),DD(l)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C... Establish upper triangular matrix.

LP = IL+l

DO 10 I = LP,IU

R = AA(I)/BB(I-1)

BB(I) = BB(I)-R*CC(I-1)

DD(I) = DD(I)-R*DD(I-1)

10 CONTINUE

C . ......................................................................
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C ..,. Back substitution.

DD(IU) =DD(IU)/BB(IU)

DO 20 I1 LP,IU

J = IU-I+IL

DD(J) = (DD(J)-CC(J)*DD(J+l))/BB(J)

20 CONTINUE

RETURN

END

The inverse mode solver, developed by Van Dalsem and Steger, uses a lower upper
decomposition scheme to solve a system of equations of the form

BIL CIL XJL DIL

FL+1 BL+j CIL+, XIL+1 DJL+I

FIL+2 A IL +2 B IL +2 CIL +2 XIL+2 DIL+2

Flu Aiu Bu XI DIU

where the added coefficients F is due to the inverse forcing function. Once more, the
solution is returned in array D. The Van Dalsemn and Steger algorithm is implemented in
subroutine INVTOM which is listed below.

SUBROUTINE INVTOM(IL, IU,A,B,C,D,F)

C ... This routine implements the solution algorithm of Van Dalsem for

C ... quasi-tridiagonal matrices. It uses an upper-lower decomposition

C ... followed by baCksubstitutions for the solution.

IMPLICIT REAL*8 (A-H,O-Z)

PARAMETER (KMAX=lOO)

DIMENSION

UNCLASSIFIED



UNCLASSIFIED
B-3

> A(KMAX), B(KMAX), C(KMAX), D(KMAX),

> F(KMAX), G(KMAX), P(KMAY), R(KMAX)

C............................................................................

C ... Compute the elements of the lower and upper triangular matrices.

P(IU) = B(IU)

R(IU) = F(IU)

DO I = IU-l,IL+1,-l

G(I) = C(I)/P(I+l)

P(I) = B(I)-G(I)*A(I+l)

R (I) F F(I)-G (I) *R (I+l)

ENDDO

G(IL) =C(IL)/P(IL+l)

P(IL) =B(IL)-G(IL)*R(IL+l)

C............................................................................

C Interim solution for multiplication by upper triangular matrix.

C Results are stored in array G.

C(IU) = D(IU)

DO I = IU-l,IL,-l

C(I) = D(I)-G(I)*C(I+l)

ENDDO

C............................................................................

C ... Compute final solution. The results are stored in array D.

D (IL) = C (IL) /P(IL)

D(IL+l) = (C(IL+1)-R(IL+1)*D(IL))/P(IL+l)

DO I = IL+2,IU

D(I) = (C(I)-R(I)*D(IL)-~A(I) *D(I..) )/P(I)

ENDDO

RETURN

END
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